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a b s t r a c t 

Antibiotic consumption is a key driver of antimicrobial resistance (AR), particularly in low- and middle- 

income countries (LMICs) where risk factors for AR emergence and spread are prevalent. However, the po- 

tential contribution of mass drug administration (MDA) and systematic drug administration (SDA) of an- 

tibiotics to AR spread is unknown. We conducted a systematic review to provide an overview of MDA/SDA 

in LMICs, including indications, antibiotics used and, if investigated, levels of AR over time. This system- 

atic review is reported in accordance with the PRISMA statement. Of 2438 identified articles, 63 were 

reviewed: indications for MDA/SDA were various, and targeted populations were particularly vulnera- 

ble, including pregnant women, children, human immunodeficiency virus (HIV)-infected populations, and 

communities in outbreak settings. Available data suggest that MDA/SDA may lead to a significant in- 

crease in AR, especially following azithromycin administration. However, only 40% of studies evaluated 

AR. Integrative approaches that evaluate AR in addition to clinical outcomes are needed to understand 

the consequences of MDA/SDA implementation, combined with standardised AR surveillance for timely 

detection of AR emergence. 

© 2021 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Antimicrobial resistance (AR) is one of the greatest threats to 

lobal health, particularly in low- and middle-income countries 

LMICs) where risk factors for its emergence are widespread. Bac- 

erial infections are already leading causes of death in LMICs, and 

urther dissemination of AR could lead to increased mortality due 

o treatment failures, particularly in settings with restricted access 

o second-line drugs [1] . 

Poor infection control, inadequate sanitation and poor living 

onditions have been identified as key drivers of AR in LMICs. 

isuse, over-the-counter availability and low quality of antibiotics 

re also important contributors to AR in these settings [2] . Al- 

hough antibiotics are predominantly used for the treatment of 

acterial infections, they are also used for prophylaxis both at in- 

ividual and population levels. Mass prophylactic use of antibi- 

tics can broadly be classified as either mass drug administration 
∗ Corresponding author. Mailing address: 25–28 rue du Dr Roux, 75015 Paris, 

rance. Tel.: + 33 1 45 68 83 01; fax: + 33 1 45 68 82 04. 

E-mail address: lison.rambliere@pasteur.fr (L. Ramblière). 

L

a

i

ttps://doi.org/10.1016/j.ijantimicag.2021.106364 

924-8579/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article

Please cite this article as: L. Ramblière, D. Guillemot, E. Delarocque-As

tration on antibiotic resistance in low- and middle-income countries? A

https://doi.org/10.1016/j.ijantimicag.2021.106364 
MDA) or systematic drug administration (SDA). MDA describes ad- 

inistration of antibiotics to entire communities to control the 

pread of particular infectious diseases. For instance, the World 

ealth Organization (WHO) recommends azithromycin MDA for 

rachoma control in high-prevalence settings [3] . SDA aims to pre- 

ent specific health outcomes or complications by prescribing an- 

ibiotics to targeted groups. For example, co-trimoxazole (trimetho- 

rim/sulfamethoxazole) can be given to human immunodeficiency 

irus (HIV)-infected individuals to prevent opportunistic infections 

4] . Both of these repeated individual and/or large population ex- 

osures to antibiotics may play a critical role in the emergence and 

pread of AR [5–7] . 

To our knowledge, no systematic review has been conducted 

o describe antibiotic MDA/SDA interventions, despite their sig- 

ificance to public health and potentially important consequences 

or AR. The main objectives of this study were: (i) to provide a 

escriptive overview of MDA/SDA interventions implemented in 

MICs, including indications, targeted populations, antibiotics used 

nd modes of administration; and (ii) to investigate their potential 

mpact on AR. 
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. Methods 

We systematically reviewed the literature for studies describ- 

ng the use of MDA/SDA in LMICs. This systematic review is re- 

orted according to the Preferred Reporting Items for System- 

tic reviews and Meta-Analysis (PRISMA) statement (Supplemen- 

ary Table S1). The full study protocol was registered with PROS- 

ERO (no. CRD42020140182). 

.1. Search strategy and selection criteria 

PubMed, Web of Science, Scopus and Cochrane Library 

atabases were searched for articles published between Jan- 

ary 20 0 0 and January 2019. Additional searches were conducted 

onthly until March 2020 to capture recently published litera- 

ure. Further information was obtained using snowball searching 

y screening references identified from articles. 

We used comprehensive Boolean search strategies with search 

erms pertaining to antibiotics, MDA and SDA and corresponding 

nglish MeSH headings for each database (Supplementary Text 1). 

Articles included were original research articles describing an- 

ibiotic MDA or SDA interventions, with indication of administra- 

ion that could potentially target a substantial part of the popula- 

ion in at least one country defined as LMIC by the World Bank 

2019) [8] . Exclusion criteria were systematic reviews and meta- 

nalyses (only used as a source of references in snowball searches), 

ata collected prior to 1 January 20 0 0 and studies on MDA for tra-

homa control owing to a recently updated systematic review and 

eta-analysis investigating AR following azithromycin MDA for tra- 

homa control [9] . No language restrictions were applied. 

Three researchers were involved in the review process (LR, BTH 

nd EDA). One reviewer (LR) assessed article titles for relevance. 

wo of the three investigators (LR and BTH or EDA) independently 

eviewed all potentially relevant abstracts. The same process was 

sed for full-text screening and quality assessment. Disagreements 

ere resolved by consensus among all parties . 

For all eligible studies, we extracted details on objectives, meth- 

ds and MDA/SDA characteristics. If AR was evaluated, epidemio- 

ogical and microbiological methods were extracted. We stratified 

tudies by target populations and types of antibiotic, and sum- 

arised data on AR when evaluated (resistant pathogen preva- 

ence, measures of association). 

The Critical Appraisal Skills Programme tools based on Cochrane 

uidelines were used to assess study quality. To assess data extrac- 

ion quality, two investigators (LR and BTH or EDA) reviewed ex- 

racted data for selected articles. 

. Results 

Overall, 2438 articles were identified ( Fig. 1 ). After removal of 

uplicates, 2131 articles were eligible for title screening, of which 

50 were eligible for abstract screening. Of 86 full-text articles as- 

essed, 63 met our inclusion criteria. These 63 articles described 

6 different studies across 19 countries. The majority of studies 

ere from Africa (32 studies; 89%), in particular Southern Africa 

17 studies; 47%) ( Fig. 2 ). Moreover, 25 studies (69%) were ran- 

omised controlled trials and 26 (72%) were implemented in an 

rban setting. Other study characteristics are given in Supplemen- 

ary Table S2. 

.1. Antibiotics administered 

Overall, the most commonly used antibiotic was co-trimoxazole 

16 studies, 14 of which were among HIV-exposed or -infected in- 

ividuals), with dosing consistent with international recommenda- 

ions. Other common antibiotics under study were azithromycin 
2 
seven studies) and amoxicillin (six studies), with variable dosing. 

etails of populations, antibiotics, doses and frequency, and main 

utcomes investigated are presented in Table 1 and Fig. 3 . 

.2. Populations targeted 

Of the 36 studies, 14 (39%) assessed MDA/SDA in children 

10–40] . MDA was administered to healthy infants in three stud- 

es [10–22] . First, ARMCA investigated the impact of amoxicillin, 

o-trimoxazole or azithromycin MDA on infant weight gain [10–

2] . Second, MORDOR assessed the effect of azithromycin MDA 

n infant morbidity and mortality [13–21] . The last study inves- 

igated the effect on infant morbidity and mortality of adding 

zithromycin to seasonal malaria chemoprophylaxis [22] . 

Five studies targeted severely malnourished infants under 2 

ears old [23–27] . Among them, four investigated the impact of 

moxicillin as SDA on nutritional recovery [23–26] , of which two 

urther included arms with ceftriaxone [24] or cefdinir [25] . The 

fth assessed the impact of co-trimoxazole as SDA on mortality 

27] . 

Six studies targeted HIV-exposed or -infected children [28–40] , 

ll in the context of co-trimoxazole as SDA to decrease morbimor- 

ality. 

Eleven studies (31%) [41–59] evaluated the efficacy of SDA in 

regnant women. Six studies targeted healthy pregnant women 

41–53] , of which four evaluated azithromycin to decrease mater- 

al/infant morbidity, preterm birth or low birth weight, or to im- 

rove gestational weight gain [42–51] . Two studies evaluated an- 

ibiotic SDA to prevent early neonatal sepsis, using either amoxi- 

illin, cefalexin or penicillin [41] , or ampicillin in combination or 

ot with metronidazole [53] . Three studies targeted HIV-infected 

regnant women [54–57] to prevent morbimortality using either 

o-trimoxazole [57] , cefoxitin [56] , or metronidazole in combina- 

ion with erythromycin or ampicillin [ 54 , 55 ]. The remaining two 

tudies targeted women with risk factors at delivery [ 58 , 59 ]. The

rst administered ampicillin to women with premature rupture of 

etal membranes to prevent early-onset neonatal sepsis [58] . The 

ther assessed cefazolin administration at cord clamping to pre- 

ent maternal infections among women who underwent Caesarean 

ection [59] . 

Eight studies (22%) investigated co-trimoxazole as SDA in HIV- 

nfected adults [60–68] (or adults and children) and its potential to 

ecrease mortality rates, infections or malaria incidence. 

The remaining three studies (8%) described MDA in outbreak 

ettings [69–72] , which administered doxycycline to contacts of 

holera patients in Cameroon [69] , ciprofloxacin to members of 

igerien villages with a high prevalence of meningitis [70] and 

zithromycin to members of villages with a high prevalence of 

aws in Papua New Guinea [ 71 , 72 ]. 

.3. Antimicrobial resistance (AR) 

AR was evaluated post-baseline (after first antibiotic admin- 

stration) in 14 studies (39%) [ 11 , 17 , 18 , 32 , 36 , 37 , 39 , 50 , 52 , 60 , 63 , 66–

2 ]: in 36% of studies (5/14) among children [ 11 , 17 , 18 , 32 , 36 , 37 , 39 ],

n 18% (2/11) among pregnant women [ 50 , 52 ], in 50% (4/8) among

IV-infected adults [ 60 , 63 , 66–68 ], and in 100% (3/3) in outbreak

ettings [69–72] . Of note, two additional studies investigated AR 

t baseline without post-exposure follow-up and were thus ex- 

luded from the following results [ 23 , 48 ]. AR was detected with

ither phenotypic methods (11/14) [ 17 , 32 , 36 , 37 , 50 , 52 , 60 , 63 , 66–70 ]

r molecular methods (4/14) [ 11 , 17 , 18 , 39 , 71 , 72 ], with one study us-

ng both methods [17] . 

Four studies with both intervention and control groups evalu- 

ted carriage of resistant bacteria cross-sectionally [ 11 , 17 , 18 , 36 , 60 ]
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Fig. 1. PRISMA flow diagram. LMICs, low- and middle-income countries. 

Fig. 2. Geographic distribution of the 63 included articles (36 studies). 
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Table 1 

Mass or systematic administration of antibiotics among 63 included articles: target populations, antibiotics used, antibiotic dosing and frequency, and main outcomes 

investigated. 

Target population MDA/SDA a Dose (mg) Frequency Main outcomes investigated 

Amoxicillin 

• 1-59m healthy [10–12] MDA 25/kg 2/d b x 5d Weight gain 

• 1-59m malnourished [23] SDA 80/kg 2/d x7d Nutritional recovery 

• 1-59m malnourished [24] SDA 12.5 1/d x5d Weight gain 

• 1-59m malnourished [25] SDA 80/kg 2/d x2w 

c Mortality and nutritional recovery 

• 6-59m malnourished [26] SDA 60/kg 1/d x7d Nutritional recovery 

• Healthy [41] SDA 500 1 at delivery Early-onset neonatal sepsis 

Ampicillin 

• Vaginal delivery [53] SDA 1000 1/6h before 

delivery 

Early-onset neonatal sepsis 

• HIV-infected [ 54 , 55 ] SDA 500 + 250 3/d x7d Mortality and morbidity d 

• Pre-labor SROM 

e [58] SDA 1500 1 at delivery Early-onset neonatal sepsis 

Azithromycin 

• 1-59m healthy[13–21] MDA 20/kg 2/y f x3y Mortality, morbidity and resistance gene abundance 

• 1-59m healthy [10–12] MDA 5/kg 1/d x5d Mortality, hospital admission 

• 3-59m healthy [22] MDA 100 or 200 1/d x3d Weight gain 

• Healthy [42] SDA 1000 1 at 2 nd and 3 rd 

trimester 

Preterm-birth 

• Healthy [43–45] SDA 500 2 at 3 rd trimester Preterm deliveries, fetal and neonatal weight 

• Healthy [29–33] SDA 500 2/d x2d up to 3 

times 

Gestational weight gain, birth weight 

• Healthy [49–52] SDA 2000 1 at delivery Mortality and morbidity d , infant weight gain 

• Yaws outbreak [ 71 , 72 ] MDA 30/kg 1 dose Prevalence of yaws 

Cefazolin 

• C-section [59] SDA 2000 1 at cord clamping Maternal infections 

Cefdinir 

• 1-59m malnourished [25] MDA 14/kg 2/d x2w Mortality and nutritional recovery 

Cefoxitin 

• HIV-infected, vaginal 

delivery [56] 

SDA 2000 1 at delivery Maternal infections 

Ceftriaxone 

• 1-59m malnourished [24] SDA 50/kg 1/d x5d Weight gain 

Cephalexin 

• Healthy [41] SDA 500 1 at delivery Early-onset neonatal sepsis 

Ciprofloxacin 

• Previous meningitis 

outbreak [70] 

MDA 250 or 500 1 dose Meningitis attack rate 

Co-trimoxazole 

• 1-59m healthy [10–12] MDA 240 2/d x5d Weight gain 

• 2-59m malnourished [27] SDA 120 or 240 1/d x1y Mortality 

• 3-17y HIV-infected [ 28 , 40 ] SDA 480 or 960 1/d x96w or 

x200w 

Mortality, hospital admission, skin infection 

• 3-14y HIV-infected 

[29–33] 

SDA 240 or 480 1/d x4y Mortality, hospital admission, antibiotic consumption 

and pneumococcal colonization 

• 2-5y HIV-infected [ 34 , 35 ] SDA 60/kg 1/d x4y Malaria incidence 

• 0-1y HIV-exposed [36] SDA 60/kg 1/d x1y Pneumococcal colonization 

• 0-15m HIV-exposed [37] SDA 120 or 240 1/d x15m 

g Colonization of resistant Enterobacteriaceae 

• 0-1y HIV-exposed [ 38 , 39 ] SDA 120 or 240 1/d Morbidity and resistance gene abundance 

• HIV-infected [57] SDA 480 2/d x16d Mortality and hospital admission 

• HIV-infected [60] SDA 960 2/d Colonization of resistant E. coli 

• HIV-infected [61] SDA 960 1/d Mortality 

• HIV-infected [62] SDA 960 1/d Mortality and malaria incidence 

• HIV-infected [63] SDA 960 1/d Colonization of resistant E. coli 

• HIV-infected with immune 

recovery [64] 

SDA 960 1/d Mortality and morbidity 

• HIV-infected with immune 

recovery [64] 

SDA 960 1/d Incidence of co-trimoxazole-preventable events or death 

• And children HIV-infected 

[ 66 , 67 ] 

SDA 960 1/d Mortality and morbidity 

• > 15y HIV-infected [68] SDA 960 1/d Pneumococcal colonization 

Doxycycline 

• contacts of infected 

Cholera patients [69] 

MDA 5/kg 1 dose Cholera incidence and rate of V. cholerae resistance 

( continued on next page ) 

4 
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Table 1 ( continued ) 

Target population MDA/SDA a Dose (mg) Frequency Main outcomes investigated 

Erythromicyn 

• HIV-infected [ 54 , 55 ] SDA 500 + 250 3/d x7d Mortality and morbidity d 

Penicillin 

• Healthy [41] SDA 500 1 at delivery Early-onset neonatal sepsis 

Legends 

Infants and children d- day 

Pregnant women w- week 

HIV-infected individuals m- month 

Communities y- year 

a- MDA/SDA: Mass or systematic drug administration 

b- d: day 

c- w: week 

d- of pregnant women and their neonate 

e- SROM: Spontaneous Rupture of Membranes 

f- y: year 

g- m: month 

[10–12] – 3 arms: co-trimoxazole, azithromycin, amoxicillin 

[41] – 3 arms: amoxicillin, cephalexin, penicillin 

[24] – 2 arms: amoxicillin, ceftriaxone 

[25] – 2 arms: amoxicillin, cefdinir 

[ 54 , 55 ] – 3 arms: ampicillin + metronidazole or erythromycin + metronidazole 

[53] – 2 arms: ampicillin or ampicillin + metronidazole 

Fig. 3. Main populations, antibiotics used and indications for mass or systematic drug administration in low- and middle-income countries. 

5 
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Table 2 

Single time-point evaluation of antibiotic resistance following antibiotic administration 

Outcome evaluated Study name Sample Method Class or antibiotic evaluated Time 1 (days) Prevalence exposed/ unexposed Association measure 2 CI 95% pvalue 

Amoxicillin ARMCA [11] Rectal MG Beta-lactam 10 3.1 [0.7; 13.3] NS 

Resistome ARMCA [11] Rectal MG Macrolide 10 1.24 [0.6; 4.4] NS 

ARMCA [11] Rectal MG Sulfonamide 10 15.3 [1.8; 129.1] 0.01 

ARMCA [11] Rectal MG Trimethoprim 10 1.4 [0.5; 4.0] NS 

Azithromycin MORDOR [18] Rectal MG Aminoglycosides 730 1.3 / 2.7 [0.0; 2.7] / [1.0; 5.0] NS 

Resistome MORDOR [17] Rectal MG Aminoglycosides 730 38.0 / 31.3 [29.2; 44.7] / [24.7; 36.7] NS 

ARMCA [11] Rectal MG Beta-lactam 10 1.9 [0.5; 6.6] NS 

MORDOR [18] Rectal MG Beta-lactam 730 36.0 / 34.0 [27.3; 43.3] / [24.0; 44.0] NS 

MORDOR [17] Rectal MG Beta-lactam 730 68.0 / 63.3 [60.0; 74.0] / [56.3; 70.7] NS 

MORDOR [18] Rectal MG Fluoroquinolones 730 4.7 / 2.0 [1.3; 9.3] / [0.0; 5.0] NS 

MORDOR [17] Rectal MG Fluoroquinolones 730 27.3 / 28.7 [19.3; 35.3] / [22.0; 35.3] NS 

MORDOR [17] Rectal MG Glycopeptides 730 1.3 / 1.3 [0.0; 2.7] / [0.0; 2.7] NS 

ARMCA [11] Rectal MG Macrolides 10 2.6 [1.5; 4.4] < 0.001 

MORDOR [18] Rectal MG Macrolides 730 16.7 / 2.7 [9.3; 24.7] / [1.0; 5.0] 0.001 

MORDOR [17] Rectal MG Macrolides 730 68.0 / 46.7 [61.3; 74.0] / [36.0; 54.0] 0.002 

MORDOR [18] Rectal MG Metronidazole 730 30.0 / 23.3 [18.7; 39.3] / [16.0; 30.7] NS 

MORDOR [17] Rectal MG Metronidazole 730 31.3 / 23.3 [20.7; 42.0] / [16.0; 29.3] NS 

ARMCA [11] Rectal MG Sulfonamides 10 16.0 [1.9; 133.5] 0.01 

MORDOR [18] Rectal MG Sulfonamides 730 0.7 / 2.0 [0.0; 2.0] / [0.0; 4.0] NS 

MORDOR [17] Rectal MG Sulfonamides 730 16.7 / 22.7 [9.3; 24.0] / [17.3; 29.6] NS 

MORDOR [17] Rectal MG Tetracyclines 730 75.3 / 74.0 [66.3; 80.0] / [68.7; 78.7] NS 

MORDOR [18] Rectal MG Tetracyclines 730 27.3 / 30.7 [20.7; 34.7] / [22.7; 39.3] NS 

ARMCA [11] Rectal MG Trimethoprim 10 1.8 [0.7; 5.1] NS 

MORDOR [17] Rectal MG Trimethoprim 730 51.3 / 48.7 [44.0; 58.0] / [38.7; 57.3] NS 

MORDOR [18] Rectal MG Trimethoprim 730 2.0 / 2.0 [0.0; 4.0] / [0.0; 4.0] NS 

Streptococcus MORDOR [17] Nasal PDD Co-trimoxazole 730 84.7 / 77.1 [76.4; 92.4] / [65.4; 88.1] NS 

pneumoniae MORDOR [17] Nasal PDD Clindamycin 730 9.0 / 1.7 [4.3; 14.1] / [0.0; 4.3] NS 

MORDOR [17] Nasal PDD Doxycycline 730 60.1 / 50.1 [50.8; 70.5] / [33.7; 66.0] NS 

MORDOR [17] Nasal PDD Erythromycin 730 12.3 / 2.9 [5.7; 20.0] / [0.0; 6.1] 0.02 

MORDOR [17] Nasal PDD Penicillin 730 18.7 / 22.3 [8.2; 30.6] / [10.2; 37.6] NS 

Co-trimoxazole ARMCA [11] Rectal MG Beta-lactam 10 1.8 [0.5; 6.4] NS 

Resistome ARMCA [11] Rectal MG Macrolides 10 1.6 [0.9; 3.0] NS 

ARMCA [11] Rectal MG Sulfonamides 10 8.8 [1; 77.0] 0.05 

ARMCA [11] Rectal MG Trimethoprim 10 3.3 [1.1; 10.0] 0.04 

Escherichia coli [60] Rectal PDD Ampicillin 7 to 168 10.2 3 [5.9; 17.8] < 0.001 

[60] Rectal PDD Azithromycin 7 to 168 1.2 3 [0.71; 1.9] NS 

[60] Rectal PDD Chloramphenicol 7 to 168 7.8 3 [3.0; 20.2] < 0.001 

[60] Rectal PDD Ciprofloxacin 7 to 168 17.1 3 [2.3; 127.7] 0.006 

Streptococcus TZI project [36] Nasal PE Chloramphenicol 42 0.8 [0.3; 2.3] NS 

pneumoniae TZI project [36] Nasal PE Clindamycin 42 1.6 [1.0; 2.6] 0.04 

TZI project [36] Nasal PE Erythromycin 42 1.0 [0.6; 1.7] NS 

TZI project [36] Nasal PE Penicillin 42 1.1 [0.7; 1.7] NS 

TZI project [36] Nasal PE Tetracycline 42 0.9 [0.6; 1.5] NS 

CI-Confidence Interval, MG – metagenomics, PDD - Phenotype disk diffusion, PE- Phenotype ellipsometry 

1 – Time between first antibiotic administration and sampling, 2 – Control versus intervention, 3- Risk of non-susceptibility when co-trimoxazole non-susceptible 

6
 



L. Ramblière, D. Guillemot, E. Delarocque-Astagneau et al. International Journal of Antimicrobial Agents xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: ANTAGE [m5G; June 8, 2021;9:14 ] 

Fig. 4. Longitudinal evaluation of antimicrobial resistance with repeated measures. Resistance over time following (A) azithromycin and (B) co-trimoxazole administration. 
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 Table 2 ). Single sampling time points ranged from 6–730 days fol- 

owing first antibiotic administration. AR was evaluated longitudi- 

ally in ten studies [ 32 , 36 , 37 , 39 , 50 , 52 , 60 , 63 , 66–72 ] ( Fig. 4 ). Follow-

p ranged from 30 days to 10 years. 

.3.1. Azithromycin 

Of seven studies investigating azithromycin MDA/SDA, four 

valuated AR. 

Two studies, both among healthy children, investigated gut 

etagenomic resistance after MDA. In ARMCA, resistance determi- 

ants corresponding to each antibiotic class were identified using 

equencing of DNA extracted from rectal swabs [11] . Five days af- 

er the last MDA, increases in the prevalence of macrolide and sul- 

onamide resistance genes were found [risk ratio (RR) = 3.6 ( P < 

.001) and RR = 16.0 ( P = 0.01)] [11] . For resistance genes to other

ntibiotic classes, such as β-lactams and fluoroquinolones, the 

revalence did not differ between antibiotic and placebo groups 

11] . In MORDOR, antibiotic resistance determinants/genes identi- 

ed were Ls, ermA, ermB, ermF, ermT, ermX, lnuA, lnuC, lsa, macB, 

efA, mel, mphA and msrD [18] . Six months after the last MDA, 

eterminants of macrolide resistance from metagenomic DNA se- 

uencing were significantly higher in the antibiotic group than in 

he placebo group for the intestinal flora (12.3% vs. 2.9%; P = 0.02) 

nd the nasopharyngeal flora (68.8% vs. 46.7%; P = 0.002) [17] . 

owever, the presence of genetic resistance determinants at the 

NA level is not always associated with phenotypic resistance. This 
7 
equires analysis of gene expression at the RNA level. In MORDOR, 

xpression of macrolide resistance genes in the gut was also sig- 

ificantly higher in the antibiotic group than in the placebo group 

16.7% vs. 2.7%; P = 0.001) [18] . 

Two studies, one in infants (MORDOR) [17] and the other in 

regnant women [50] , assessed Streptococcus pneumoniae resis- 

ance. In MORDOR, the proportion of resistance to erythromycin in 

asopharyngeal samples was higher in the antibiotic group than in 

ontrols (12.3% vs. 2.9%; P = 0.02) [17] . In pregnant women receiv- 

ng antibiotics, proportions of S. pneumoniae and Staphylococcus au- 

eus resistant to azithromycin were higher compared with the con- 

rol group in nasopharyngeal, breast milk and vaginal samples at 

ay 28 [50] . While antibiotics were administered only to mothers, 

nfants born to mothers in the antibiotic group had higher rates 

f S. aureus resistant to azithromycin in nasopharyngeal samples 

aken at 1 month of age (4.5% vs. 16.7%; P < 0.001), but rates 

ere similar to controls at 12 months (3.1% vs. 2.6%; P = 0.724) 

 50 , 52 ]. The prevalence of resistant S. pneumoniae and S. aureus 

o other antibiotic classes (such as erythromycin, chloramphenicol 

nd clindamycin) was similar between both arms at 28 days and 

2 months [52] . 

In a study evaluating Treponema pallidum resistance following 

zithromycin MDA in residents of yaws-endemic villages [ 71 , 72 ], 

ates of macrolide resistance genes ( A2058G and A2059G ) did not 

hange over time and remained below 10% [71] (Supplementary 

ig. S1). 
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.3.2. Co-trimoxazole 

Of the 16 studies in which co-trimoxazole was used as SDA, 9 

valuated AR. 

AR was assessed using metagenomic analysis in two studies. In 

RMCA, analysis of rectal swabs from healthy infants showed a 

ignificant increase in the risk of carrying sulfonamide (RR = 8.8; 

 = 0.05) and trimethoprim (RR = 3.3; P = 0.04) resistance de- 

erminants relative to the placebo group, while no difference was 

bserved for β-lactam and macrolide resistance genes [11] . The 

econd study targeted HIV-exposed uninfected infants [39] . In the 

roup treated with co-trimoxazole compared with placebo, the au- 

hors showed a decrease of gut microbiome β-diversity (diversity 

n resistance gene composition), increased AR gene α-diversity (re- 

istance gene richness) ( P = 0.0045) and increased overall resis- 

ance gene prevalence ( P = 0.007) [39] . 

Streptococcus pneumoniae AR was investigated in three stud- 

es [ 32 , 36 , 68 ]. Based on a national surveillance system, Everett

t al. reported a high rate of co-trimoxazole resistance ( > 90%) 

n S. pneumoniae cultures of cerebrospinal fluid and blood from 

dults and children admitted to hospital for severe bacterial in- 

ections [68] . No resistance to other antibiotics such as tetracy- 

line, chloramphenicol or penicillin was reported [68] . The two re- 

aining studies investigated AR in nasopharyngeal samples of HIV- 

nfected children: high levels of co-trimoxazole resistance were ob- 

erved at baseline both in antibiotic (85.2% [36] and 58% [32] ) 

nd control groups (83.3% [36] and 60% [32] ), with an increase in 

oth groups observed in the first months of administration [36] . 

ver 2 years, one study showed a higher level of co-trimoxazole- 

esistant S. pneumoniae in the co-trimoxazole arm than in the 

lacebo arm (88% vs. 72%; P < 0.0 0 01) [32] . The proportion of

aemophilus influenzae resistant to co-trimoxazole was also higher 

n the co-trimoxazole arm [32] . The second study found an in- 

rease in nasopharyngeal colonisation with S. pneumoniae resistant 

o co-trimoxazole (RR = 3.2; P = 0.04) and clindamycin (RR = 1.6; 

 = 0.04) [36] . However, no increase was detected for resistance to 

enicillin, erythromycin, tetracycline or chloramphenicol [36] . 

Four studies investigated phenotypic AR of faecal Escherichia 

oli , all in HIV-infected or -exposed populations. In adults, propor- 

ions of E. coli resistant to co-trimoxazole were similar at 24 weeks 

n both groups. In the co-trimoxazole arm compared with placebo, 

igher proportions of E. coli resistant to ampicillin [odds ratio 

OR) = 10.2; P < 0.001], chloramphenicol (OR = 7.8; P < 0.001), 

iprofloxacin (OR = 17.1; P = 0.006) and nalidixic acid (OR = 26.4; 

 = 0.001) were found [60] . In HIV-exposed but uninfected infants, 

he proportion of E. coli resistant to co-trimoxazole was higher 

n co-trimoxazole recipients compared with placebo [at 3 months, 

4% vs. 51% ( P < 0.0 0 01); at 6 months, 84% vs. 57% ( P = 0.01)] as

ell as in Klebsiella spp. at 3 months (94% vs. 51%; P < 0.0 0 01)

nd 6 months (69% vs. 14%; P = 0.002) [37] . In HIV-infected pa-

ients with CD4 cell counts < 350 cell/mm 

3 , the resistant rate of E.

oli to co-trimoxazole was 54% (vs. 29% in the control group) and 

eached 100% (vs. 53%) at 12 months [63] . Resistance rates were 

lso higher compared with baseline for ampicillin (from 74% to 

00%), amoxicillin/clavulanic acid (from 33% to 100%) and ceftriax- 

ne (from 2% to 54%) [63] . In the remaining study, 76% of bacterial

solates ( E. coli, Shigella spp., Campylobacter spp. or Salmonella spp.) 

ere classified as resistant before and 83% after co-trimoxazole use 

mong HIV-infected adults [67] . In their HIV-negative family mem- 

ers with diarrhoea, no difference in the proportion of resistance 

o co-trimoxazole was observed [66] . 

.3.3. Amoxicillin 

Of the five studies using amoxicillin as MDA, AR was evalu- 

ted in only one study [11] . While the prevalences of β-lactam, 

acrolide and trimethoprim resistance genes were not signif- 

cantly different, the prevalence of sulfonamide resistance was 
8 
igher in the amoxicillin arm compared with control (RR = 15.3; 

 = 0.01) [11] . 

.3.4. Ciprofloxacin 

Faecal carriage of extended-spectrum β-lactamase (ESBL)- 

roducing Enterobacteriaceae was evaluated in a cluster- 

andomised trial evaluating administration of a single oral 

ose of ciprofloxacin to prevent meningococcal meningitis [70] . 

arriage of ciprofloxacin-resistant Enterobacteriaceae was > 90% 

t baseline and at 28 days post-intervention with no significant 

hange observed (Supplementary Fig. S1) [70] . 

.3.5. Doxycycline 

Doxycycline was administered to contacts of cholera patients 

nd Vibrio cholerae resistance was tested in stool samples of 

holera patients during an 8-month outbreak [69] . The authors re- 

orted stable susceptibility patterns, including high rates of resis- 

ance to co-trimoxazole and colistin and low rates to amoxicillin, 

lavulanic acid, cefotaxime, doxycycline and pefloxacin [69] . 

. Discussion 

MDA/SDA interventions can reduce the burden of infectious dis- 

ases and improve population health [73–75] . However, MDA/SDA 

ay also contribute to the mounting global health crisis posed 

y AR [5–7] . We conducted an exhaustive review of published 

DA/SDA studies conducted in LMICs since 20 0 0 and, when eval- 

ated, their impacts on AR. 

We found that MDA/SDA interventions targeted a diverse range 

f particularly vulnerable populations, including severely malnour- 

shed infants, pregnant women, young children, HIV-exposed and 

infected individuals, and communities in outbreak settings. These 

opulations are over-represented in many LMICs [76–79] and 

ometimes overlap, such that the same individuals may be tar- 

eted by more than one MDA/SDA. Three main families of an- 

ibiotics were administered for three main purposes: amoxicillin 

nd azithromycin administration for weight gain; ampicillin to pre- 

ent neonatal sepsis; and co-trimoxazole to decrease mortality 

nd morbidity. Despite potentially important consequences for AR, 

nly 14 (39%) of the 36 included studies evaluated AR following 

DA/SDA. However limited, our findings are consistent with the 

xpectation that MDA/SDA interventions lead to greater AR preva- 

ence, especially following co-trimoxazole and azithromycin ad- 

inistration. Co-trimoxazole resistance was high at baseline in E. 

oli ( > 50%) [ 37 , 60 , 63 , 66 , 67 ] and S. pneumoniae ( > 75%) [ 36 , 68 ], yet

ncreased further in several populations receiving co-trimoxazole 

DA/SDA. In some included studies, co-trimoxazole prophylaxis 

as followed by increased resistance to other antibiotic classes 

uch as aminopenicillins, chloramphenicol and quinolones [60] . It 

s possible that co-trimoxazole induces cross-resistance, although 

here is currently no scientific consensus [80] . One alternative ex- 

lanation is that co-trimoxazole resistance genes can be found 

longside other resistance genes, for example on the same plasmid 

80] . Another explanation for co-trimoxazole favouring resistance 

o unrelated antibiotics, such as clindamycin, is co-selection of re- 

ated antibiotic resistance genes [80] . 

Azithromycin MDA/SDA was associated with increased 

acrolide resistance in S. pneumoniae and S. aureu s [ 50 , 52 , 81 ]

nd increased resistance genes among microbiota [ 11 , 17 , 18 ]. These

esults are concordant with those reported by O’Brien et al. who 

ound a transient or persistent increase in the proportion of S. 

neumoniae, E. coli and S. aureus resistant to macrolides following 

DA for trachoma control [9] . 

MDA/SDA is currently recommended by the WHO for various 

ndications, so potentially large numbers of people are eligible 

ecipients. For example, following recent updates to treatment 
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R

uidelines, the WHO now recommends SDA for children with 

ncomplicated severe acute malnutrition, both in hospital and 

ommunity settings, without practical guidelines such as antibiotic 

lass, dose or duration [82] . 

Since 2014, in settings with a high infectious disease preva- 

ence, the WHO also recommends co-trimoxazole for all HIV- 

nfected persons, irrespective of their CD4 cell count, as well as 

IV-exposed neonates until 6 weeks of age [4] . With an HIV preva- 

ence above 20% in some LMICs [78] , significant proportions of the 

opulation may be eligible for SDA under these guidelines. 

Guidelines for other uses of MDA/SDA will likely evolve as more 

vidence from current and future studies becomes available. This 

as potential to further expand populations targeted by these in- 

erventions. For instance, a research priority identified by the WHO 

s evaluation of SDA for all women during the second or third 

rimesters of pregnancy to prevent infectious morbidity [83] . Sev- 

ral randomised controlled trials investigating azithromycin MDA 

re currently ongoing, targeting diverse populations including chil- 

ren following discharge from hospital, children with non-severe 

iarrhoea and malnourished children [84–86] . Moreover, in sev- 

ral low-income countries, the official guidelines for treatment of 

atients with COVID-19 (coronavirus disease 2019) at the primary 

are level recommend azithromycin for mild symptomatic COVID- 

9 patients, asymptomatic contacts or prophylaxis [87] . 

The vast majority of included studies were set in Africa, thus 

imiting information regarding the indications and populations tar- 

eted by MDA/SDA and their potential impact on AR in other con- 

inents. 

Epidemiological methods were heterogeneous without system- 

tic evaluation of AR over time. AR can be transient [88–90] or 

ay remain elevated for long periods because of the low fitness 

osts of resistance [91] and/or continued selection pressure from 

ther sources of antibiotic consumption. Temporal dynamics of AR 

ere often poorly described or difficult to interpret, largely owing 

o variability in study design and duration of follow-up, which var- 

ed from 5 days to 10 years. 

Most studies investigated AR only in the treatment group, and 

valuated AR only to the focal antibiotic and among few bacte- 

ial species. In addition, AR was evaluated only in bacteria specif- 

cally targeted by MDA/SDA, yet antibiotic exposure broadly se- 

ects for resistance across human microflora, particularly in the 

igestive tract [ 7 , 92 ]. In addition to the focal pathogen, assess-

ent of resistance across non-focal species and across multiple 

ntibiotic classes will be necessary to assess the overall impact 

f broad-spectrum antibiotic use on pathogenic bacterial species. 

R is a concern not only for individuals targeted by MDA/SDA 

ut also their contacts and environments, raising concerns about 

ropagation of multidrug-resistant bacteria both in individuals and 

hroughout communities. For example, among pregnant women re- 

eiving azithromycin MDA, a rise of AR in S. aureus was also ob- 

erved in their untreated neonates [50] . Better understanding of 

he mechanisms of AR across species could help to better target 

articular bacteria while minimising bystander selection [75] . Mi- 

robiological assessment of AR was also highly heterogeneous and 

ncluded phenotypic, molecular and metagenomic testing meth- 

ds. Phenotypic methods can identify resistance of specific or- 

anisms to specific antibiotics and are commonly used to char- 

cterise AR both among Gram-positive and Gram-negative bacte- 

ia. Metagenomic methods can detect resistance determinants in 

everal types of organisms at the same time, but cannot deter- 

ine whether this affects pathogenic or non-pathogenic bacteria. 

hese complementary methods should be considered simultane- 

usly for future cross-assessments. Moreover, the microbiome can 

e affected in terms of bacterial abundance, richness and diversity 

5] . It may take long periods for microbiota to recover and return 

o a species composition similar to baseline, particularly in the 
9 
ontext of repeated administration during vulnerable time periods 

uch as childhood [ 5 , 7 ]. Disruption of the microbiome can further 

elect for emergence of resistant pathogens responsible for acute 

isease and increase the risk of intestinal infection [5] . More stud- 

es are needed to better understand the potentially far-reaching 

onsequences of MDA/SDA on the microbiome. 

To our knowledge, this review is the first to provide a global 

verview of MDA/SDA administration and its potential impact on 

R. Our findings suggest that MDA/SDA with antibiotics such as 

zithromycin and co-trimoxazole may lead to significant increases 

n AR levels across bacterial species. Guidelines for AR evaluation 

n the context of MDA/SDA are sorely needed, including integra- 

ive approaches that incorporate standardised methodologies for 

R evaluation. 
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